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ABSTRACT: We continue the study of the construction of analytical coefficients of the e-
expansion of hypergeometric functions and their connection with Feynman diagrams. In
this paper, we show the following results:

Theorem A: The multiple (inverse) binomial sums
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where k = +1, S,(j) is a harmonic series, S,(j) = i:1 k%, and c is any integer number
are expressible in terms of Remiddi-Vermaseren functions;
Theorem B: The hypergeometric functions

. I | . 1 Lo
pFp—1 <A+65;B+bs, §+Bp1;z> , pEp—1 (/H—Eie, §+AP;B+bs; z) ,

are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with
coeflicients that are ratios of polynomials.
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1. Introduction

Feynman diagrams [[[] are a primary tool for calculating radiative corrections to any pro-
cesses within the Standard Model or its extensions. With increasing of accuracy of mea-
surements, more and more complicated diagrams (with increasing number of loops and
legs and increasing numbers of variables associated with different particle masses) must be
evaluated. The essential progress in such calculations is often associated with the inven-
tion of new (mainly mathematical) algorithms (e.g. refs. [B, fl]) and their realization as a
computer programs (e.g. refs. [, f]). One fruitful approach to the calculation of Feynman
diagrams is based on their representation in terms of hypergeometric functions [fi] or multi-
ple series [fi, §]. We will refer to such representations as hypergeometric representations for
Feynman diagrams. Unfortunately, there does not exist a universal hypergeometric rep-
resentation for all types of diagrams. Constructing these representations is still a matter
of the personal experience of the researcher [§—[L3. Nevertheless, existing experience with
Feynman diagrams leads us to expect that all Feynman diagrams should be associated with
hypergeometric functions.

For practical applications, finding a hypergeometric representation is not enough. It
is necessary to construct the so-called e-expansion, which we may understand as the con-
struction of the analytical coefficients of the Laurent expansion of hypergeometric func-
tions around rational values of their parameters. In this direction, very limited results are



available.! The pioneering systematic activity in studying the Laurent series expansion of
hypergeometric functions at particular values of the argument (z = 1) was started by David
Broadhurst [[[4] in the context of Euler-Zagier sums (or multidimensional zeta values) [[[5].
This activity has received further consideration for another, physically interesting point,
z = 1/4 (see the relevant appendix in ref. [}, [[(]), and also for the “primitive sixth roots of
unity” (see ref. [LG]). Over time, other types of sums? have been analysed in a several pub-
lications: harmonic sums [, [7], generalized harmonic sums [[§, [Z], binomial sums [T, [
and inverse binomial sums [[[3, [Ld].

The introduction of new functions, such as multiple polylogarithms, (see appendix [A])
independently in mathematics and physics [[ld, RJ-RJ],® allows us to derive a set of uni-
versal algorithms for the simplification and construction of the analytical coefficients of
the Laurent expansion of a large class of hypergeometric functions. (For details, see
refs. [I0, [[3, 7, [[§, B PJ].) Recently, similar problems have also drawn the attention of
mathematicians 2§, Bd]. However, the general solution of this problem remains unknown.

The multiple series representation has further applications in the framework of Feyn-
man diagram calculations. In particular, the Smirnov-Tausk approach [, ] (see also
ref. [B1]) was very productive for constructing the analytical coefficients of the e-expansion
(finite part mainly) of Feynman diagrams depending on one or two massless (ratio of
massive) kinematic variables. Presently, there are several computer realizations of this ap-
proach [{]. In the framework of this technique, the Feynman parameter representation [
for a diagram is rewritten in terms of multiple Mellin-Barnes (contour integral) repre-
sentations, resulting in expressions for which a Laurent expansion about ¢ = 0 may be
constructed explicitly, using gamma functions and their derivatives. The results may be
summed analytically or numerically, typically leading to the same sums as in the con-
struction of the e-expansion of hypergeometric functions: the (generalized) harmonic sums
and (inverse) binomial sums. Inverse binomial sums typically arise from massive loops;
see refs. [, BZ. Another source of multiple sums in Feynman diagrams comes from the
Frobenius series solution of a differential equation [B3]. Other classes of sums have been
considered as well.

Analytical results are possible when these sums can be evaluated explicitly. For the
analysis of (generalized) harmonic sums, the nested sums approach [, [[§] permits the re-
duction of any type of (generalized) harmonic sum to a set of basis sums. The analytical
evaluation of these basis sums is an independent problem. (See, for example, ref. [[[J].)

'One of the classical tasks in mathematics is to find the full set of parameters and arguments for which
hypergeometric functions are expressible in terms of algebraic functions. Quantum field theory makes a
quantum generalisation of this classical task: to find the full set of parameters and arguments so that the all-
order e-expansion is expressible in terms of known special functions or identify the full set of functions which
must be invented in order to construct the all-order e-expansion of generalized hypergeometric functions.

2See eq. (ﬂ) for clarifying of terminology.

3Hyperlogarithms have been considered by Kummer, Poincaré, and Lappo-Danilevsky; see @] The
interrelation between hyperlogarithms and multiple polylogarithms has been discussed in [R5].

* Finite harmonic sums are another class, on which more details may be found in ref. [B4]. However,
there presently does not exist an appropriate generalization of multiple (inverse) binomial sums to finite
harmonic sums. Some recent attempts in this direction have been discussed in refs. [E,



The Generating function approach is a universal method for analytically evaluating
arbitrary sums, which was successfully applied (see section (2.3) in ref. [LJ]) for an analysis
of multiple (inverse) binomial sums [[(], [J]. The generating function approach allows us to
convert arbitrary sums to a system of differential equations. The question of the express-
ibility of the solution to this differential equation in terms of known (special) functions is
not addressed by this approach. In particular, the partial results of refs. [, L[]-[LJ] were
restricted by attempts to express the results of the calculation in terms of only classical
or Nielsen polylogarithms [B7, Bg]. It is presently unknown what type of sums (beyond
generalized harmonic sums) are expressible in terms of known special functions.?

The aim of this paper is to prove the following theorems:

Theorem A. The multiple (inverse) binomial sums
=1 A . .
ij—csal(J_l)"'Sap(J_l) ) (1.1)
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where k = £1, S,(j) = i:l k% is a harmonic series, and c is any integer, are expressible
in terms of Remiddi- Vermaseren functions with
(1) for k =1: (i) ¢ > 2 rational coefficients; (ii) ¢ < 1 ratios of polynomials;
(2) for k= —1: (i) ¢ > 1 rational coefficients; (ii) ¢ < 0 ratios of polynomials.

Theorem B. The all order e-expansion of the generalized hypergeometric functions [
N
pFp—1 | A+de; B+be, §+Il; z ), (1.2a)
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where f_f, B are lists of integers and I, Is are integers, are expressible in terms of the
harmonic polylogarithms with coefficients that are ratios of polynomials.

The paper is organised as follows. In section fl, we will prove theorem A. In section [,
the results of theorem A will be applied to hypergeometric functions to prove theorem
B. Section { is devoted to a discussion of an algorithm for the reduction and analytical
evaluation of generalized multiple (inverse) binomial sums. Appendix [§] contains some

basic information about relevant special functions.

5There is not universal agreement on what it means to express a solution in terms of known special
functions. One reasonable answer has been presented by Kitaev in the Introduction to ref. @] where
he quotes R. Askye’s Forward to the book Symmetries and Separation of Variables by W. Miller, Jr.,@}
which says “One term which has not been defined so far is ‘special function’. My definition is simple, but
not time invariant. A function is a special function if it occurs often enough so that it gets a name”. Kitaev
adds, “...most of the people who apply them ...understand, under the notion of special functions, a set of
functions which can be found in one of the well-known reference books. ...” To this, we may add “functions
which can be found in one of the well-known computer algebra systems.”



2. Analytical evaluation of a basis of multiple (inverse) binomial sums of
arbitrary weight and depth

The main purpose of this section is to prove theorem A. In the first subsection, we will
consider differential equations satisfied by multiple (inverse) binomial sums, and use the
analytical properties of such sums to derive two useful lemmas. In the second subsection,
we prove auxiliary propositions for the separate cases of multiple binomial sums and inverse
binomial sums, and use them to complete the proof of theorem A.

2.1 Some analytical properties of multiple (inverse) binomial sums of arbitrary
weight and depth

Let us define the multiple sums

o A
k 1w : . . .
Sl ) = D0 S (= 1)+ S, (= 1) (25— 1)+ S, (25 = 1)
Jj=1 (])
(2.1)
where S,(j) = izl k% is a harmonic series and c is any integer. For particular values of

k, the sums (R.1) are called

0 generalized harmonic
k= 1 inverse binomial sums .

—1 binomial

The case 2201)7,,,7% 07,,,70;6(u) is called a harmonic sum. The number w = c+aj; +---ap +

by + - - - by is called the weight and d = p + ¢ is called the depth.
The general properties of multiple sums can be derived from their generating functions.

Let us rewrite the multiple sum (R.1) in the form Eg%c(u) =37 u? 776(7]2.0( j), where @ =

(a1,...,ap) and b= (b1,...,by) denote the collective lists of indices and n(k) (7) is the

d’;l;;c
coefficient of w/. In order to find the differential equation for generating functions of
multiple sums it is necessary to find a recurrence relation for the coefficients n&kg (y) with

a;b;c
(k)

2 (7), the recurrence
e )

respect to the summation index j. Using the explicit form of n

relation for the coefficients can be written in the form®

‘ k, . —k (k) /. o (k) /. k), .
225 + V]G + V) G+ 1) =5 (G) + ) (2.2)
where the “remainder” rg%)(j) is given by
21\* . u 4 Y 1 . o RN
<j> r89) = T[S0 G = D+57] x TT |S0(25 = D+@) " +@2j+1)7"]
r=1 =1

- H HS(M (] - 1)Sb1 (2] - 1) . (23)

r=11=1

SWe would like to point out that eq. (@) is valid for an arbitrary integer £ and ¢ — k > 0. In the case
¢ — k < 0, the proper term will be generated in the r.h.s. of the equation.



Multiplying both sides of eq. (R.2) by u/, summing from j = 1 to oo, and using the
fact that any extra power of j corresponds to the derivative u(d/du) leads to the following
differential equations for the generating functions ngg (u) (see ref. [I9)):

4 d 2 A\ _a )
|:<E_1> u%—a} <u@> Eé;%;c(u) = 5]270 + Ré,%(u) s (24&)
1 d\°¢
(a—l) <@> 2 () = 80+ BOw) (2.4D)

L) u o] () st = d -1
[(u 4) U 2} (udu> EE;E;c( u) = 20,0+ 2 <2ud +1> Rig (u), (2.4c)

where Rikl(u) =)W ’I“(kg (4) and 04 is the Kronecker é-function. The boundary con-

ditions for any of these sums and their derivatives are

d\’
S - (0) = —0.1.9.... 2.
(udu> apel0) =0, J=0.12 (25)

From the analysis in refs. [[L1]-[L3, [9], we have deduced that the set of equations for
the generating functions has a simpler form in terms of a new variable. For multiple inverse
binomial sums, this variable is defined by

_Vu—d-Vu _ (-yp

U= — , 2.6
Vu—4+u’ y (2:6)
and for multiple binomial sums, it is defined by
1—v1—-4
e — (2.7)

:77 u—i
1441 —4u (14 x)?

Let us consider the differential equation for multiple inverse binomial sums in terms of
these new variables. The notation E( ) (y)[( )] will be used for a sum defined by eq. (R.1),

where the variable u is rewritten in terms of variable y[x] defined by eq. (2.6) [(R7)]:

Son ) = g ) =20 )
(-1 — ( ) — ( )

In terms of the variable y, equation (R.44) may be split into sum of two equations

0, YT )= 10500 (290)
1—i—yydy aibie W) = 1+y06?;g i e
d @ 1
Y0 ad W) = b0+ () (2.9b)
with boundary condition
T (D =0



Equation (R.94)) could be rewritten as

l—y d - 1) (1)
N DN 2.10
< 1 yydy> a;b;c(y) d;b;j(y)a ( )

or in equivalent form

1ty dy X)) = —— =322 (y) 2.11
< 1+ yydy> E;b;c(y) /1 dy -y y 6;b;j<y) ( )

From this representation we immediately obtain the following lemma:

Lemma 1. (see ref. [[9]) If for some integer j, the series 2(12]( u) is expressible in terms of

Remiddi- Vermaseren functions (A.4H) with rational coefficients, then the sums s I)) (u)

asb;j+i
for positive integers i can also be expressed in terms of functions of this type with rational

coefficients.

In a similar manner, let us rewrite the differential equations for the generating function
of the multiple binomial sums as

Itx  d\Gn, oy _ 14X
(1—Xxdx> ECY;E;C(X) - 1_X05;5 ) (2.12a)
> i I+x, d 1)
210771055 00 = 2 2.12
20 7 () 51)70*( N T >R (x) - (2.12b)

(H—Xxi)c_j 2V =5, (2.13)

or in an equivalent form

1+x d >cj1 (-1 /X (1 2 ) (—1)
- Ay YV = d - X . 2.14
(1 X a5 00 = [ x| 2= 7 ) g 00 (2.14)

In this case, the boundary condition (R.§) is unchanged, and we can make a statement

similar to the previous one:

Lemma 2. (see ref. [I9]) If for some integer j, the series E(_l)( ) is expressible in terms

of harmonic polylogarithms ([A.4H) with rational coefficients, then the sums E( ( ) for

positive integers i can also be expressed in terms of harmonic polylogarithms wzth mtzonal
coefficients.

2.2 Analytical evaluation of multiple (inverse) binomial sums of arbitrary
weight and depth

Let us now consider the special case of sums (R.1]) including only products of harmonic
sums with argument (j — 1); see eq. ([.1]), and show that they are expressible in terms



of Remiddi-Vermaseren functions.” In agreement with ref. [[J], we will denote such a

(k)

sum as ¥g .. 4., (u). In this case, the non-homogeneous term T:k_( /) of differential

equation (P.4d) is again expressible in terms of sums of the same type, E(k) by _.m(w), but

with smaller depth:

p

N K p
<2? > r () = [T [Ser G = D457 ] =[] Sa G = 1), k==1. (2.15)
r=1

J r=1

We shall start with the case of inverse binomial sums, k = 1:

In order to prove theorem A for inverse binomial sums, we will prove an auxiliary propo-
sition:

Proposition 1. Forc =1, the inverse binomial sums are expressible in terms of harmonic
polylogarithms with rational coefficients c, g times a factor (1 —y)/(1+y):

sW o ()

Ay, ,ap; —;

_ 1oy Zcrgln Y LZ(‘;) (y) , (2.16)

where 7+ 1+ -+ s, =14+ a1 +--- + a, (weight of Lh.s. = weight of r.h.s.).

Substituting expression (R.1) in the r.h.s. of eq. (R.11]), setting j = 1, and making
trivial splitting of the denominator, we get the following result:

Corollary 1. For c > 2, the inverse binomial sums are expressible in terms of harmonic

polylogarithms with rational coefficients d, g:

5

at, - ,ap; —3C

—Zd zIn" yng)(), c>2 (2.17)

where r+ 51+ -+ sy =c+ a1 + -+ ap (weight of L.h.s. = weight of r.h.s.).

Proof. Let us consider inverse binomial sums of depth 0:

J )J

77756

Y

J:1

It was shown in ref. [§ that for any ¢ > 2 this sum is expressible in terms of generalized log-
sine functions [B7 which could be rewritten [[[(, IJ] in terms of Nielsen polylogarithms. [Bg

"These sums are related to the multiple sums
oo 1 ny

Z (2n1 ) by bp

ni>ng>--np=1 \ng ng 1My = Np




Here we will present an iterated solution for the case of interest. The system (.9) has the

form
1-y d el (1) 1—y (1)
—Ty— DI =—"20" 2.1
< 1 yydy> 7,7,c(y) 1 ya,ﬁ(y), (2.18a)
d 1)
—0 =1. 2.1
ydy0,7,(y) (2.18b)

For ¢ = 1, we immediately get the relation

1 1—y
2(_3,_;1(y)=—1+y1ny, (2.19)

which coincides with proposition [ and can be readily transformed into the form of

eq. (R.10):
11—y d o2 (1) 1,
<_1+yydy> )= —5 In“y . (2.20)

The iterated solution of this differential equation for an arbitrary integer ¢ > 2 is expressible
in terms of Remiddi-Vermaseren functions with rational coefficients® (in accordance with
corollary [[).

For sums of depth 1, i.e.

the coefficients of the non-homogeneous part are equal to inverse binomial sums of the zero

depth, (2]]) i) () = 1/4 , and egs. (R.9) take the form

at;—

c—1
B R JE s ' ) R (2.21a)
1+y dy ai;—;c 1+y ai;— )
d
yd—ya&uy) =3 ). (2.21b)

For ¢ = 1 the system of equations (R.21) takes the simplest form

(1) _ 1=y
Eal;—;l(y) - 1+y0a1;7(y) ) (2223‘)
d
yd—ya&uy) =3 ). (2.22b)

Let us now consider the case a; = 1. Using eq. (R.19), we derive from eq. (.22)
M) ()= 2102y — 9Ly (—
01,2 (y)=5 0"y —2Inyln(l +y) - 2Liz (~y) ,

i.e., result is expressible in terms of harmonic polylogarithms. For a; > 2, the r.h.s.
of the second equation (2.22H) is expressible in terms of harmonic polylogarithms with

8 Compare with the results of refs. [E, E, @]



(1)

rational coefficients (in accordance with previous considerations), so that o,,._(y) will also
be expressible in terms of harmonic polylogarithms with rational coefficients. Substituting
these results in the first equation (-22d), we obtain results in accordance with proposition [Il.
For ¢ > 2, the desired result follows from lemma [I]

We may complete the proof by mathematical induction. Let us assume that proposi-
tion [l is valid for multiple inverse binomial sums of depth k:

00 .
1 1 uj . .
Et(ll),"',ak;—;l(u) = Z mj a1 (3 - 1) T Sak(J - 1)
= u=u(y)
1-y
= sln"y Lis : 2.23
[y 2 ey L) W) (2.23)
7,8
where Li((z) (z) is a coloured polylogarithm of a square root of unity, § = sq,--- , sk, and

r+s1+4---8, = c+ai+---+ag. Then for ¢ > 2, corollary |I| also holds for multiple inverse
binomial sums of depth k:

1 W . ;
Egzll),“-,ak;*;c(u) = Z 2—j._Sa1 (] - 1) T Sak (] - 1) - Zcrghl y i i“) ( ) ’

(2.24)

For the sum of depth k+1, the coefficients of the non-homogeneous part may be ex-
pressed as linear combinations of sums of depth j, j = 0,--- , k, with integer coefficients
and all possible symmetric distributions of the original indices between terms of the new

sums:
1-y d 1 1-y
( 1+yyd_y> Eél),"',akﬂ;*w(y) = Fyaél)y"'vak+l§*(y) ) (2'253‘)
Y s Z 3 L Sy(G—1)-S;, (-1
dy 1 %k+1 2] k4+1—p)! T P )
Yy _]=1 p 0(217 Zk+1 ( + p) T B
(2.25b)
where the sum over indices (i1,---ixy1) is to be taken over all permutations of the list

(a1, aps1). If dppq + - -ige1 > 2, the r.hus. of eq. (R.25H) is expressible in terms of

harmonic polylogarithms of weight k with rational coefficients; see eq. (R.24). As the result
(1)
a1, Q415

polylogarithms of weight k+1 with rational coefficients.

of integrating this equation, o (y) also will be expressible in terms of harmonic

If 4py1 + - -igy1 = 1, the r.hs. of eq. (R.25H) is expressible in terms of harmonic
polylogarithms of weight k with a common factor (1—1y)/(1+y); see eq. (B-23). The result
of integrating this equation again will be expressible in terms of harmonic polylogarithms
of weight k+1 with rational coefficients:

1 Y 1 2 S
O'c(Ll),---,ak+1;7(y) = /1 dt <; — 1—_”) chgln t Ll(?) (t) .



For ¢ = 1, direct substitution of the previous results into (R.254d) will show that proposition [

is valid at weight k+1. In this way, the proposition [l| is proven for all weights. Then for
c > 2, corollary [l| is also true for multiple inverse bmomial sums of depth k+1.

Applying the differential operator u% = —7 +yy dy repeatedly [ times to the sum

1

ap; _..(u), we can derive results for a similar sum with ¢ < 1.2 Thus, theorem A is

ai,:-,
proven for multiple inverse binomial sums.'°
Let us now consider the multiple binomial sums,'' (k = —1), 25;1) a: 7,C(u)
25 .
S ()56 - 18,6 -1

j=1

In order to prove theorem A for binomial sums, we will first prove the following aux-
iliary proposition:

Proposition 2. For ¢ = 0, the binomial sums are expressible in terms of harmonic poly-
logarithms and have the following structure:

_Z[ CT’8+d7"S

(-1

ai,,ap; —;0

In" x Lz(

@y QL

)00 - (2.26)

u=u(x)

where 7+ 514+ s, =1+a1+ -+ a, (weight of l.h.s. = weight of r.h.s.) and ¢, z and

d, z are rational numbers.
Substituting the expression (R.26) in the r.h.s. of eq. (R.14) and setting j = 0, we get

Corollary 2. For ¢ > 1, the binomial sums are expressible in terms of harmonic polylog-

arithms with rational coefficients d~r7§.'

(1)

Ay, ,ap; —;C

—Zd lnxLzZ:)(), c>1, (2.27)

where 7+ 1+ -+ sy =c+ay + -+ ap (weight of Lh.s. is equal to weight of r.h.s.).

We start again from the multiple binomial sums of depth 0,

727\ u?
E(_i) = <J>—
D =32 (7%

J=1

9Some particular cases of sums of this type were considered also in ref. @]
10 ATl multiple inverse binomial sums up to weight 4 were calculated in ref. ; see table I in appendix
C.

HThese sums are related to the multiple sums

oo
Z <2n1> Unl
n br e
- 1 ) ning np

ni>ng>--np=1

,10,



In this case, eqs. (R.13) have the form

I+x  d\“ (-1 I+x (-1

STXL D) w0 () = X

<1_XXdX> 7,7,6( ) o (X) I
1 ,d

“(1
5 (1) ax

1—x &
"V =1, (2.282)

where the factor i—i may be written as

I+x 2

=———1. 2.29
1y (2.29)
For ¢ = 0, we obtain
_ 1
2C ) =2 |—— -1 2.30
a0 =2 |2 -1] (230)
which coincides with proposition fJ. Substituting this result into r.h.s. of eq. (P.14) we find
Lix A\ oy
—=X— ¥ =2In(1 . 2.31
(F) =500 =2m 4+ (2.31)

The results of iterated integration, for ¢ > 1 and boundary condition defined by eq. (P.§),
are expressible in terms of generalized polylogarithms (A.9) with rational coefficients (see
Corollary B). For the sums of depth 1,

(1) o\l 2 /25wl = 1
Em;f;c(u) = Z . -_cSal (-1 = Z I R Z sar
j=1 NI/ SN |
we have
I+x d\“ (- I+x (-

<—1_§Xa> S0 = —1_10212&) : (2.32a)
1 d (- _ _
20750 200 = 2550, 100 + 250, (00 (2.32D)

Integrating by part in eq. (R.32H) and taking into account that'?

d 1 2 -
—E(,;i);c(X) = <_ - —> E(*;i)QC*l(X) ’

dx x 1+x
we obtain ) X gt
Dy 1~ Xw(=D (-1
O-al;—(X)__mE—;—;al (X) +/0 727;7;61171(75) . (233)
Using this results in the r.h.s. of eq. (R.324), we have
I+x  d\ o= (—1) 1+ x /X dt (-1
—=x— | X . == —= —> t) . 2.34
((n) = =00+ 25 (9200 0. e

2 his relation follows from the differential relation

d (k) _ (k)
uaza‘;g;c(u) - EEi;g;c—l(u) !

— 11 —



Let us set ¢ = 0. It is necessary to consider two cases: (i) a; = 1 and (ii) a; > 2. For

a1 = 1, we can use the explicit results (R.30) and (R.31]) to get

_ 4
EiZo00 = 21 =) = 2n(1 430 = g (1 = x)

in accordance with proposition f. For a; > 2 the r.h.s. of eq. (B:32) is expressible in
terms of harmonic polylogarithms with rational coefficients, so that eq. (R.34) is also ex-
pressible in terms of harmonic polylogarithms with rational coefficients in accordance with
proposition f.

For ¢ > 1, the desired result follows from lemma P:

c—1 X 1

G%X%) 200 =300, 00+ / dh / oy ). (235)

In particular, for a; = 1 we have
<1+§ %) 21 () = 2Lz (—x) + 2In%(1 + ) + 2Liz (x) - (2.36)

Let us assume proposition [ is valid for multiple binomial sums of depth k, and prove

the proposition for depth k+1. Thus, we assume that

[e.9]

- 27\ . .
EELI}?‘@I@Q*?O(U) = Z <J >ujsal(j — 1) 84,01 = 1)

=1 u=u(x)

_ Z[ cp8+dp8] I XLijny (1) (2.37)

where Li(i) (x) is a coloured polylogarithm of a square root of unity, §= (s1,--- ,sg), and
P+ s+ -f-sp =aj1 + -+ ag. Then for ¢ > 1, corollary [ also holds for multiple binomial
sums of depth k:

- = (2\ v, . .
Eél}')' ,akF;C(u) = Z < . >j_cS“1 (.7 - 1) T Sak (.7 - 1)

=1 7
= Zcp z1n? yLi ) (x) » (2.38)

For a sum of depth k+1, the coeﬂiments of the non-homogeneous part are expressed
as linear combinations of sums of depth j, j = 0,--- , k, with an integer coefficients and all
possible distributions of the original indices between terms of new sums, multiplied by a
factor (25 + 1):

I+x d (1) 1+X (-1)
<1 X a) Eal, . ,ak+1;7;c(X) 1 X al,---,ak+1;f(X) ) (2393‘)
1 d > 25\
500077 ot 00 = Y+ () (2.300)
jfl

1 Siy(G=1)--- 53, (G—1)
x Z Z pl(k+1—p)! jipr1tipg ’

P=0 (i1, ,ig+1)
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where the sum over indices (i1,--- ,ik11) iS to be taken over all permutations of the list
(al"" ’ak-i-l)' .

Let us denote the sub-list of length p as I = (i1,--- ,i,) and define the sum of the
remaining indices as J = ipy1 + -+ + ipy1, so that the second equation (2.39H) can be
written as

1 d (-1 -1 -1
2 (107 0t - 00=2C 227,00+ 567,00 -
nJ

Integrating by parts, we find

(-1) _ 1—x(-1) Xdt (1)
Y 00 = 5 [ 00+ [ 426, ]

)

)

Substituting this result into the r.h.s. of eq. (R.394) we have

I+x d L _ (—1) L+x [*dt (-1
(1_XXE> Ea1,~~~,ak+1;—;c(X)_Z _Ef;_;J(X)"i_l_X ) sz;—;‘]—l(tl) . (240)

-

)

Let us set ¢ = 0 and consider two cases: (i) J = 1 and (ii) J > 2. For J = 1, the
first term of the r.h.s. of eq. (R.40) is expressible in terms of harmonic polylogarithms with
rational coefficients. The last term of the r.h.s. of eq. (2.4() has the structure of eq. (2.37)
so that after integration, it will again be expressible in terms of harmonic polylogarithms
of weight k+1. For J > 2, both terms of the r.h.s. of eq. (2.4() are expressible in terms of
harmonic polylogarithms of weight k+1 (see eq. (B-40)). In this way, the proposition [ is
found to be valid at the weight k+1. Consequently, proposition [ is proven for all weights.

Therefore, for ¢ > 1, corollary P is also valid for the multiple binomial sums of weight k+1.
1+x
1—x
(x), we can derive results for similar sums with ¢ < 0. Thus, theorem A is
13

. . . d
Applying the differential operator uz- =
(-1
aty,ap; —ic
proven for multiple binomial sums.

X% repeatedly [ times to the sum

3. All-order e-expansion of hypergeometric functions with one half-integer
value of the parameters via multiple (inverse) binomial sums

In this section, we turn our attention to the proof of theorem B. It is well known that any
function ,F,_1(d+m;b+k; z) is expressible in terms of p other functions of the same type:
— — — p — — —
Ry1(a@,b, 2)pFpr (@ + b+ k;2) = Y Rp(d, b, 2)p Fp1(@ + €isb+ Epsz) . (3.1)
k=1

where i, E, €, and Ek are lists of integers and Ry are polynomials in parameters @, g,
and z. Systematic methods for solving this problem were elaborated in refs. [[[4, [f.
For generalized hypergeometric functions of theorem B, let us choose as basis functions
arbitrary p-functions from the following set:

13 All multiple binomial sums up to weight 3 were calculated in ref. , ]; see the proper appendixes.
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e for eq. ([.2d) there are p? functions of the proper type:

7 g Al a7 {2+ die}t
pmp {14 e;e}P= 91 {2 + ¢;e}@

In the framework of the approach developed in refs. [§, [[0—[2, [[9], the study of the

e-expansion of basis hypergeometric functions has been reduced to the study of multiple

e for eq. ([.2H) there are p? — 1 functions of the proper type:

< {1+ e}, {2+ die}*
3
29

F,
{14+ e}~ 972, {2+ ¢e}@

pLp—1

(inverse) binomial sums. It is easy to get the following representations:

{1+ a;e}™, {2+ dic}t 1% (14ce) o 1 (42)f
_ = — s : A, (3.2
ptp—1 (%’{1 —|—€Z'€}R’{2 +C@'€}Q z 2z HZL=1(1 —|—d15) jzl (?7]) jK*Rfl ( a)
3 K 1L QHQ 1 > /9i z\J
pFp1 2’{““262 ) {2+d25Q} 2| = _72:1( +cs€) > ( ‘_7> .ISEEHA, (3.2)
{1+eie} ™, {24cie} z 117 (14-d;e) PNV

where the superscripts K, L, R, Q show the lengths of the parameter lists,

A = exp [Z # <wkj7k + Sk(n — 1)tk)] =1-¢ <% +t151(n — 1)> +0(%), (3.3)

Sa(n) = Z;‘L:1 1/7% is a harmonic sum, and the constants are defined as

AkEZaf, C’kEZcf, DkEde, EkEZef,

th=Cr+E,— A, — Dy, w,=Cy— Dy,

where the summations extend over all possible values of the parameters in eqs. (B.2). In
this way, the e-expansions of the basis functions (B.2) are expressible in terms of multiple
(inverse) binomial sums studied in section f. But all these are are expressible in terms of
harmonic polylogarithms. Thus, theorem B is proven.

4. Generalized multiple (inverse) binomial sums via derivatives of gener-
alized hypergeometric functions

In physical applications, in particular, within Smirnov-Tausk approach, more general sums,
in addition to the ones defined in eq. ([L.1]), may be generated:

(G +e)(G+ ek u : '
Z{(] 1)!(J + e2) —Say (m1j + b1) -+ Say (myj + by)

2 @) | Wite

where {a;},{b;},{ck}, {mi},n are integers and k = £1. The procedure of finding the
proper differential equation (see refs. [[[3, Bf] for a detailed discussion) can be applied

- 14 —



to analytically evaluate any of these new sums. Another approach is based on extension
of the algorithm of nested sums [I7, [l for the study of the algebraic relations between
these sums. However, there is a third approach arising from the possibility of reducing an
arbitrary generalized hypergeometric function to a set of basis functions with the help of
the Zeilberger-Takayama algorithm described by eq. (B.1]).

To be more specific, let us divide both sides of eq. (B.I) by Ry+1(a;,b;, z) and construct
the e-expansion for the hypergeometric functions described in theorem B. The r.h.s. of this
relation is expressible analytically in terms of harmonic polylogarithms with polynomial
coefficients. The l.h.s. can be used as a generating function for generalized multiple (inverse)

binomial sums. Using a standard form for the Taylor expansion of the Gamma function,'*
(m + ag); 2. (—ag)* ‘
——— =expy — [Sk(m+j—1)—=Sk(m—1)] » ,
(m); kz::l k
where (a); = I'(a + j)/I'(«) is the Pochhammer symbol, we obtain
P+1 L |1
o {ml+al€}L, {pi_i_%}PJrlfL AR Z 2 Hl 1(my + aje); IT; (pz + §)j
{ne+bee}”, {qﬁ%}P*K =5 7T (i + bie); HP:IK (4s +3);
PH— L P-K
l 1 ml _] 2pz 2] l +1
1=

where the my, ng, p;, g; are integers and

o0 K
_explz - <Zbﬁ[Sk(nw—irj—l)—Sk(nw—l)]

k=1 w=1

EL: [a Sp(mi+j—1)— kSk(mi—l)]>] .

i=1

Setting K = L = P in eq. (1), we get generating functions for generalized multiple

z> (4.2a)

ay=my;bp=ny

binomial sums: the derivatives

II (i)” <i>k pFp P
Tx \Oa b, ) T i}

lead to terms in the epsilon expansion of the form

>N (2p+1)g; 1 27 TIE (my); ,

> San (Inr+3) (4.2b)
l P H M ’

j=0 p+1 4 1L, ( F M=1

"The relation between harmonic sums S, (j) and derivatives of the function ¥(z) = 4 InT'(2) is

VG = (=D (k= DG — SkG - D], k> 1L
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where the I, are integers from the lists {m;}* and {n;z}*. For L=P+1land K =P —1
we get generating functions for generalized multiple inverse binomial sums:

o Tl o Sk {al}PJrl
__ — F z =
g<8az> <0bk> PP e

a=my;bp=ny
o0

(g+1); (42)/ 74 (my
7 (29+1)9; 48 T

j H SaM IM+J) (4-3)

For K = P and L = P + 1 we get generating functions for generalized multiple harmonic

8 T 8 Sk {al}P—f—l
— — F z =
L <3al> <3bk> B 08 S

ap=my;bp=ny
j=

sums:

HPJrl( l)j
—=1 I T Sy, (I +) - (4.4)
> I

Instead of one hypergeometric function, we could consider a linear combination of the
functions of the same type. Such a combination is also reducible and expressible in terms of
our basis functions. Combining the proper set of hypergeometric functions, we could expect
that any individual sums,'® of the type described by r.h.s. of egs. (.2)—([E4) are expressible
in terms of generalized (harmonic) polylogarithms with polynomial coefficients.!

15Using the results of the all-order e-expansion for Gauss hypergeometric functions [E, E] we could
consider a series of type (@)

15Tn particular, all sums presented in ref. [@] are reducible in terms of our basis sums or sums studied in
ref. [@] Indeed, taking into account that

2n n+1/2n+2
(2n+1)<n)7 2 <n+1)

and shifting the index of summation we have

n

2n+1)

Mg

Xa(n)Yz(2n+1)

NIM

n=1 j=1

Z(QJ)_X J—DY5(2—1) — Xa(0)Y5(1),  (4.5)

where Xgz(n) = II;_1Sa, (n) and Yz(2n + 1) = II;_;Sq, (2n + 1), are products of harmonic sums, with the
vector @ having 7 components. As a consequence, Xz(0) = 0 and Y3(1) = 1. In this way, any sums described
by eq. (@) may be reduced to sums of type (Ell), and for Y;(j) = 1 they are reduced to the sums studied
in the present paper. Another possible generalization of the sums considered here is

Z 2n:1) a(n+1)Y5(2n+1) %Z( 2())Y5(25—1) — Xa()Y;(1) . (4.6)

Jj=1

Due to the depth reduction relation,

Xz(5) =Xz(3—-1) +Z Z 1 Sll(J_l)Slp(]_l) 7

pl(r —p)! gt it

0 (i1, yig41)

sums of type @) are also expressible in terms sums of type @)
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These arguments suggest a criterion for what type of generalized multiple (inverse) bi-
nomial sum are expressible in terms of harmonic polylogarithms with coefficients that are
ratios of polynomials. This is just the beginning of a general analysis, but the corresponding
analysis for harmonic sums is already known to be valid. [I7] Unfortunately, existing com-
puter algebra algorithms [[f7] do not allow us to identify the multiple series with derivatives
of hypergeometric functions or their combinations. It is still matter of personal experience,
but this approach looks very promising and is worthy of further analysis.

5. Discussion and conclusions

We have constructed an iterative solution for multiple (inverse) binomial sums defined by
eq. ([.1)). It was shown that by the appropriate change of variables, defined by eqs. (.§)
and (R.7), the multiple (inverse) binomial sums are converted into harmonic polylogarithms
(see theorem A). Symbolically, this may be expressed as

<01 W ) . 1—y .
Z 2—j_~Sa1(J —1)--- 8,0 -1 =7 n Zcp,§lnpy Ll(i) ) (5.1a)
7j=1 (]) J u:u(y) y p,5 °
=1 W ~
Z —j)j_Stn (j 1) Sak (] 1) = Zcp sln"y Ll(fsf) (y) ; €2>2 (5 1b)
7= u=u(y) %
and
0o s
( J)uﬂsal (G—1)--- 8., (-1 = 1 i’ +d, §:| In? x Ll(g) (x), (5.2a)
7= u=u(x) ¥
25\ v
Z(JJ>]—C w(—1)-- 8., (—1) = Zcpgln XLI(Z) (x), c>1 (5.2b)
J=1 - p,3
u=u(x)

where c is a positive integer, ¢, s, ¢, 7 and d, g are rational coefficients, the weight of Lh.s.
= weight of r.h.s., Li(i) (x) is the coloured multiple polylogarithm of a square root of unity,

]*11
SaG—1) =) —

i@’
i=1

is a harmonic series. The mappings (b.1), (5.9) are defined in the radius of convergence of
the Lh.s.:

1 (5.3)

4, inverse binomial
ul <
1

binomial

Unfortunately, one of the unsolved problem is the completeness of the representa-
tion (b.1), (6.9). In other words, is it possible to express all harmonic polylogarithms in
terms of multiple (inverse) binomial sums? If not, what kind of sums must be added to
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get a complete basis? Another problem beyond our present considerations is to find the
algebraic relations among the sums.

From representation (f.1), (p.9), it is evident that some (or all, if the basis is com-
plete) of the alternating or non-alternating!” multiple Euler-Zagier sums (or multiple zeta
values) [[[§], can be written in terms of multiple (inverse) binomial sums of special values of
arguments. Two arguments where such a representation is possible are trivially obtained
by setting the arguments of the harmonic polylogarithms y, x to +1:

u = 4 s y = —1 3 (5'5)
1
== =1. 5.6
u=geX (5.6)
Another such point!'®
3—vb
u=-1, y= V5 (5.7)

2
has been discussed intensively in the context of Apéry-like expressions for Riemann zeta
functions (see [I§] and References therein). For two other points

u=1, y=exp <z§> , (5.8)
u=2, y=i, (5.9)

the relation between multiple inverse binomial sums and multiple zeta values was analysed
mainly by the method of experimental mathematics. [iJ] Some of the relations are presented
in ref. [f(] and in the appendix of ref. [I].

Let us make a few comments about harmonic polylogarithms of a complex argument.
For the case 0 < u < 4, the variable y defined in (B.)) belongs to a complex unit circle,
y = exp(if). In this case, the coloured polylogarithms of a square root of unity can be split
into real and imaginary parts as in the case of classical polylogarithms. [B7] At the present,
there is no commonly accepted notation for the new functions generated by such splitting.
In ref. [B0), the multiple Glaishers and multiple Clausen functions were introduced as
the real and imaginary parts of generalized polylogarithms of complex unit argument. In
ref. [0, 6, 7, [, the splitting of Nielsen polylogarithms was analysed in detail. In this

case, the real and imaginary parts are reduced to classical Clausen functions, Cl; (6) and
(k)
J

basis of new LsLsc; ;1 (f)-functions.

generalized log-sine functions Ls;” (). Ref. [B1] attempts to classify new functions on the

In appendix A of ref. [[J], the iterated representation for Remiddi-Vermaseren func-
tions of complex unit was constructed. It was observed [§, [0, [, f3] that the physically

"Let us recall that multiple Euler-Zagier sums are defined as

k
C(sl,...,sk; 01,...,Uk): Z H
j=1

ni1>ng>...>nE >0

), (5.4)

J

where 0; = £1 and s; > 0. o = 1 is called non-alternating and ¢ = —1 is alternating sums, correspondingly.
18We are thankful to Andrei Davydychev for information about the relation between this point and the

2
“golden ratio”, @]7 % = (172\/5) :

,18,



interesting case, representing single-scale diagrams with with two massive particle cuts,
corresponds to Remiddi-Vermaseren functions ([A.9) with argument equal to a primitive
“sixth root of unity”, y = exp ( ) This gives an explanation of the proper “basis of tran-
scendental constants” constructed in refs. [J] and [[L(], and its difference from the proper
basis of Broadhurst [[[f]. Of course, for numerical evaluation of harmonic polylogarithms
of complex argument, only a series representation is necessary. [bJ]

Using the results of theorem A, we have proved theorems B about the all-order e-
expansion of a special class of hypergeometric functions. The proof includes two steps:
(i) the algebraic reduction of generalized hypergeometric functions of the type specified
in theorems B to basic functions and (ii) the algorithms for calculating the analytical
coefficients of the e-expansion of basic hypergeometric functions. The implementation of
step (i) — the reduction algorithm — is based on general considerations performed in
refs. {4, §). In step (ii), the algorithm is based on series representation of the basis
hypergeometric functions defined by eq. ([J). The coefficients of the e-expansion are
expressible in terms of multiple (inverse) binomial sums analyzed in theorem A.

Exploring the opportunity to reduce an arbitrary generalized hypergeometric function
to a set of basis functions with the help of the Zeilberger-Takayama algorithm, we have
presented in section ] some arguments about one possible generalization of (inverse) bino-
mial sums (see eq. ({4)) which would be expressible in terms of harmonic polylogarithms
with coefficients that are ratios of polynomials.
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A. Zoo of special functions

For completeness, we will present the definition of a set of new functions, such as multiple

polylogarithms'®
mi  m2 Mn
2t zg % 2
i 1 2 n
L1k17k2,"',kn (Z1’Z2"" ’Zn) = § . (A-l)
mbimbz ok
mi1>ma>--m,>0 171 72 n

9For a review, we recommended ref. @]
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Special cases of multiple polylogarithms®® include generalized polylogarithms, defined by

. z
Liky ko, kn (2) = Z ki k2 kn (A.2)

M1 >mo > My >

and coloured polylogarithms of a square root of unity, defined by?!

Li ( ) Li ( ) my a;nl .. .O—an (A 3)
1a\ (2) = Lijoy,00, 00 (2) = E ZM .
(%) SERENG) R mi'ma? - -my

where § = (s1,---s,) and & = (01, ,0,) are multi-indices and oy, is a square root of

unity, o = +1. The extension of coloured polylogarithms of square root of unity ([A.3))
by inclusion of powers of logarithms, In* z, leads to harmonic polylogarithms or Remiddi-
Vermaseren polylogarithms (or functions) [22]. These can written in the following form:

Hz(z) = Z c, 0Pz Lig, gy ook, (2) (A.4a)

Z cpzIn? z Li ) ¢ (2) . (A.4b)

where in the first equation, ([A.44), the vector A includes only components 0 and 1, and in
the second, (A.4H ), —1 components are included. The coefficients ¢ and cz are rational
numbers. In eq. (A.4) the weight of the L.h.s. = the weight of the r.h.s.

Recall that generalized polylogarithms (A.2) can be expressed as iterated integrals of

the form
dt  dt dt dt dt dt dt dt
Lik17___7kn(z) = ; ?o?o---ozol_t O...OTOYO...OYOl—t , (A.5)
k1—1 times kn—1 times
where, by definition
z t1 tr_2 thy—1
ORI
o b t 0 tk,—1 Jo 1—tg,

k1—1 times
The integral (A.J) is an iterated Chen integral [53] w.r.t. the differential forms wy = dz/z

and wy = ldz so that

z
Lig, o, (2) = / wi e whn T wy (A7)
0

The coloured polylogarithms (eq. [A.d)) also have an iterated integral representation w.r.t.
three differential forms,

d
w(]:_y, 0-:05
Y
d
we = 2 5= 41, (A.8)
1—o0y

20Qur notations corresponds to Waldschmitd’s paper of ref. @]
2'We call n depth, and k = ky + k2 +--- + kn(s =81+ 82+ -+ sn) the weight.
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so that

1
. s1—1 so—1 Sp—1 2
Ll(ol,og,"~,ok) (y) :/ W' Wo Wy Woros WY Worogeop s O = 1. (A.9)
81,82, Sk 0
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